Name: \qquad
Instructor: \qquad

Math 10550, Exam II

October 18, 2007

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min .
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!				
1. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)

Please do NOT write in this box.	
Multiple Choice	\square
11.	\square
12.	
13.	\square
Total	

Name: \qquad
Instructor: \qquad
Multiple Choice

1. (7 pts.) Find an equation for the tangent line to

$$
x^{2}+2 x y-y^{2}+x=2
$$

at the point $(1,2)$.
(a) $y=\frac{3}{2} x-2$
(b) $\quad y=\frac{5}{2} x-\frac{1}{2}$
(c) $\quad y=\frac{7}{2} x-\frac{3}{2}$
(d) $\quad y=\frac{7}{2} x-6$
(e) $\quad y=\frac{3}{2} x-\frac{1}{2}$
2. (7 pts.) The mass of a rod of length 10 cm is given by $m(x)=x^{2}+\sqrt{x^{2}+9}-3$ grams. What is the linear density of the rod at $x=4 \mathrm{~cm}$?
(a) $\frac{204}{25} \mathrm{~g} / \mathrm{cm}$
(b) $108 \mathrm{~g} / \mathrm{cm}$
(c) $\frac{41}{5} \mathrm{~g} / \mathrm{cm}$
(d) $\frac{44}{5} \mathrm{~g} / \mathrm{cm}$
(e) $\frac{41}{25} \mathrm{~g} / \mathrm{cm}$

Name: \qquad
Instructor: \qquad
3. (7 pts.) A man starts walking north from point P at a rate of 4 miles per hour. At the same time, a woman starts jogging west from point P at a rate of 6 miles per hour. After 15 minutes, at what rate is the distance between them changing?
(a) $\frac{8}{\sqrt{13}}$ miles per hour
(b) $\frac{\sqrt{13}}{2}$ miles per hour
(c) $\frac{12}{\sqrt{13}}$ miles per hour
(d) $2 \sqrt{13}$ miles per hour
(e) $\sqrt{13}$ miles per hour
4. $\left(7\right.$ pts.) Use a linear approximation to estimate $\sqrt[3]{(8.06)^{2}}$.
(a) $\sqrt[3]{(8.06)^{2}} \approx 4.04$
(b) $\sqrt[3]{(8.06)^{2}} \approx 3.99$
(c) $\sqrt[3]{(8.06)^{2}} \approx 4.01$
(d) $\sqrt[3]{(8.06)^{2}} \approx 4.33$
(e) $\sqrt[3]{(8.06)^{2}} \approx 4.02$

Name:
Instructor:
5. (7 pts.) Let

$$
f(x)=x^{4}-24 x^{2}+5 x+3 .
$$

Find the intervals where f is concave up.
(a) $(-\infty, \infty)$
(b) $(-2,2)$
(c) $(-2,2) \cup(2, \infty)$
(d) $(-\infty,-2) \cup(-2,2)$
(e) $(-\infty,-2) \cup(2, \infty)$
6.(7 pts.) Evaluate the limit

$$
\lim _{x \rightarrow \infty} \frac{2-3 x^{2}}{5 x^{2}+4 x}
$$

(a) $-\frac{3}{5}$
(b) $\frac{2}{5}$
(c) ∞
(d) $-\infty$
(e) 0

Name: \qquad
Instructor: \qquad
7.(7 pts.) Suppose f is continuous on [2,5] and differentiable on $(2,5)$. If $f(2)=1$ and $f^{\prime}(x) \leq 3$ for $2<x<5$. According to the Mean Value Theorem, how large can $f(5)$ possibly be?
(a) 12
(b) ∞
(c) 10
(d) 9
(e) 4
8. (7 pts.) Consider the function

$$
f(x)=\frac{x}{x^{2}+9}
$$

One of the following statements is true. Which one?
(a) $\quad f$ has no horizontal asymptotes, and f has a global minimum at $x=-3$.
(b) The line $y=0$ is a horizontal asymptote of f, and f has a global maximum at $x=3$.
(c) The line $y=0$ is a horizontal asymptote of f, and f has a global minimum at $x=3$.
(d) $\quad f$ has no horizontal asymptotes, and f has a global maximum at $x=3$.
(e) The line $y=1$ is a horizontal asymptote of f, and f has a local maximum at $x=0$.

Name: \qquad
Instructor: \qquad
9.(7 pts.) Let

$$
f(x)=\frac{x}{x+2} .
$$

After verifying that f satisfies the hypothesis of the Mean Value Theorem on the interval $[0,2]$, find all numbers c that satisfy the conclusion of the Mean Value Theorem.
(a) $\quad c=\frac{1}{8}$
(b) $c=2 \sqrt{2}-2$
(c) $\quad c=\frac{1}{2}$
(d) $c= \pm 2 \sqrt{2}$
(e) $\quad c=\frac{1}{4}$
10.(7 pts.) Consider the function

$$
f(x)=\frac{x}{x-1} .
$$

One of the following statements is true. Which one?
(a) $y=0$ is a horizontal asymptote of f, and f is always decreasing.
(b) $\quad x=-1$ is a vertical asymptote of f, and f is concave down on the interval $(-1,1)$.
(c) $\quad y=1$ is a horizontal asymptote of f, and f is concave down on the interval $(-\infty, 1)$.
(d) f has no horizontal asymptotes, and f has no global maximum or minimum.
(e) $\quad x=1$ is a vertical asymptote of f, and f is concave down on the interval $(1, \infty)$.

Name: \qquad
Instructor: \qquad

Partial Credit

You must show your work on the partial credit problems to receive credit!
11.(10 pts.) The position of a particle moving horizontally is given by

$$
s(t)=t^{5}-\frac{20}{3} t^{3}+6, \quad \text { for } t \geq 0 .
$$

(a) When is the particle moving to the right?
(b) What is the total distance travelled between $t=0$ seconds and $t=3$ seconds?

Name: \qquad
Instructor: \qquad
12.(10 pts.) A melting ice cube is decreasing in volume at a rate of $10 \mathrm{~cm}^{3} /$ minute, but remains a cube as it melts.
(a) How fast are the edges of the cube decreasing when the length of each edge is 20 cm ?
(b) How fast is the surface area of the cube decreasing when the length of each edge is 20 cm ?

Name: \qquad
Instructor: \qquad
13.(10 pts.) Let

$$
f(x)=3 x^{4}+16 x^{3}-30 x^{2}-2
$$

(a) What are the critical numbers for f ?
(b) If we restrict f to the interval $[-1,1]$, give the x and y values for the global maximum and the global minimum for f on this interval.

Global Max at $(x, y)=$ \qquad Global Min at $(x, y)=$ \qquad

